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Technical Abstract  

 
 Successful operation of next-generation unmanned air vehicles will demand a high level 
of autonomy.  Autonomous low-level operation in a complex environment dictates a need for on-
board, robust, reliable and efficient trajectory optimization.  In this report, we develop and 
demonstrate an innovative combination of traditional analytical and numerical solution 
procedures to produce efficient, robust and reliable means for nonlinear flight path optimization 
in the presence of time-varying obstacles and threats.  The trajectory generation problem is first 
formulated as an optimization problem using reduced-order dynamics that result from the natural 
time-scale separation that exists in the aircraft dynamics. Terrain information is incorporated 
directly into the formulation of the reduced-order dynamics, which significantly reduces the 
computational load and leads to a path planning solution that can be implemented in real-time.  
Various cases of terrain, pop-up obstacles/threats, and targets are simulated. A representative 
optimal trajectory is generated with in a high fidelity full-order nonlinear aircraft dynamics and 
compared with a solution obtained from a reduced-order optimization. The developed algorithm 
is flight demonstrated with a fixed-wing unmanned aircraft test-bed in which a neural network-
based adaptive autopilot is integrated with the on-line trajectory optimization algorithm. 
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1. Introduction 

1.1 Background 
 
 High-flying unmanned reconnaissance and surveillance systems are now being 

used extensively in the United States military.  Current development programs will soon 

produce demonstrations of next-generation unmanned flight systems that are designed to 

perform combat missions.  In practice, these vehicles must achieve a high level of 

autonomy in operations to be successfully deployed in large numbers.  Their use in first-

strike combat operations will dictate operations in densely cluttered environments that 

include unknown obstacles and threats, and will require the use of terrain for masking.  

The demand for autonomy of operations in such environments dictates the need for an 

on-board trajectory optimization capability.   

 
In any given mission scenario, the initial conditions, requirements, objectives, 

vehicle dynamics, and constraints can be analyzed at varying levels of detail to produce a 

number of feasible flight plans.  However, in most situations conflicts will arise between 

the cited factors that necessitate trade-off of one for the other.  Ad hoc methods of 

solution can be constructed for simple missions with relatively few constraints, but such 

methods are quickly overwhelmed as problem complexity grows.  In such cases formal 

methods for trajectory optimization are needed to identify a dynamically feasible solution 

that is “best” in some sense. 
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Essentially all numerical methods for solving trajectory optimization problems 

incorporate nonlinear programming (NLP) methods. Depending on how NLPs are 

employed,  methods available for a solution of trajectory optimization problems generally 

fall into two distinct categories: direct and indirect[1].  Indirect methods are characterized 

by explicitly solving the optimality conditions stated in terms of the adjoint differential 

equations, the Pontryagin’s maximum principle, and associated boundary (transversality) 

conditions[2]. Using the calculus of variations, the necessary conditions are derived by 

setting the first variation of the Hamiltonian function to zero. The indirect approach 

usually requires the solution of a nonlinear multi-point boundary value problem. An 

indirect method for optimizing a function of n variables would require analytically 

computing the gradient and then locating a set of variables using a root-finding algorithm 

such that the gradient is zero. In contrast, direct methods do not require an analytic 

expression for the necessary condition and typically does not require initial guesses for 

the adjoint variables. Instead, the dynamic state and control variables are adjusted to 

directly optimize the objective function[3]. All direct methods introduce some parametric 

representation for the control variables which in general leads to larger number of 

variables in NLP. 

While great success has been achieved in numerically solving complex nonlinear 

trajectory optimization problems using direct and indirect techniques, many short 

comings still exist.  Direct optimization schemes tend to be tolerant of a poor initial guess 

but are in general slow to converge.  Indirect methods, in contrast, can usually achieve 

greater accuracy in a few iterations but also exhibit much greater sensitivity to the initial 
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guess.  Essentially all of the available methods in both categories demand computational 

resources that until recently were simply unavailable in a flight environment.  For 

complex problem formulations with full vehicle dynamics, most have run times that 

preclude real-time mission updates.  Almost all suffer from great complexity of 

implementation.   

 

For these reasons, past aircraft trajectory generation studies were rooted in 

classical optimization theory and the calculus of variations.  A great variety of practical 

methods for optimizing the flight of aircraft both in two and three dimensions were 

developed in the 1960s and 70s.  Much of this work began with the studies performed by 

Bryson based on minimizing time, fuel or range using reduced order modeling 

methods[4, 5].  Subsequently, the use of singular perturbation methods, and multi-time 

scale analysis for trajectory optimization were suggested by Kelley[6, 7], and later 

extensively developed and applied by Calise [8-11], Ardema [12] and others. In the work 

of Calise, the emphasis was on obtaining analytic or near-analytic feedback solutions that 

could be implemented with very limited computing resources in real-time.  

In this research, we pay attention to natural time scale separation that exists in 

aircraft dynamics and attempt to exploit two-time scales in on-line trajectory 

optimization. The overall approach follows that in [13] in which a reduced-order terrain-

following optimization problem is formulated for the nap-of-the-Earth guidance of 

helicopters under the assumption that terrain-following dynamics are effectively 

described by  pseudo 3-D dynamics. Relying upon the time-scale separation assumption, 

we address various aspects of path-planning such as moving threats, interior point 
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constraints, and pop-up obstacles besides terrain-masking. As a next step, we implement 

the resulting optimal trajectory from the reduced-order dynamics in a high fidelity flight 

simulator and assess the resulting trajectory flown in the high-fidelity simulator. To be 

precise, we compare the trajectory from the reduced-order formulation to both the 

trajectory followed in the high-fidelity simulator for the reduce-order solution and the 

optimal solution for full order 6DOF aircraft dynamics.  In that procedure, we try to 

reveal various aspects that should be taken into account for the reduced-order optimal 

trajectory to be feasible with full-order 6 DOF vehicle dynamics. The report includes 

flight-test validation to demonstrate on-line re-planning of flight trajectory when a 

simulated pop-up obstacle appears.   

 

1.2  Contributions of the PHASE II Efforts 
 

This research expands on the work done by Menon and Kim[13].  The rationale in 

this research is to resort to analytical solutions to maximal degree possible for numerical 

efficiency. With this philosophy, it was decided to continue investigating using a reduced 

order formulation  initiated in [13] and exploit the benefits of analytical methods of 

solving the optimal path planning problem before it became necessary to use any 

numerical methods.  In most numerical methods, the time step for the discretization phase 

usually must be very small to avoid loss of information.  This leads to very long solving 

times.  Also, the graphical methods of solving this type of problem rarely lead to an 

optimal solution.   

An underlying theory for the reduced-order formulation is singular perturbation. 

In general, singularly perturbed dynamic systems are characterized by a small parameter 
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multiplying the derivatives of some state vector components.  If the small parameter is set 

to zero, the order of the dynamic system is reduced.  The solution to the reduced order 

problem that results when the parasitic small parameter is set to zero provides the leading 

term in a perturbation series.  Of course, the reduced order solution is not able to satisfy 

all the boundary conditions of the original full order problem.  Depending on the degree 

of sub-optimality of the reduced-order solution due to the effect of neglected dynamics, 

corrections can be made by constructing boundary layer transients that allow rapid 

variation of the fast states on a stretched time scale[14].  The boundary layer solutions are 

required to satisfy the boundary conditions violated by the reduced solution and to 

approach the reduced solution asymptotically.  Natural time scale separation that exists in 

aircraft dynamics allows the successful application of singular perturbation methods to 

problems in atmospheric flight path optimization [15].  The reduced and boundary layer 

problems are often solvable using analytic methods alone.  This has made a unified 

analysis of 3-D high-performance aircraft path optimization possible [16]. 

The components of the research presented here include: 

• Two pseudo 3-D formulations that include wind effects, moving targets, 

interior point constraints in the form of waypoints, and moving threats.  

• Derivation for second order variation conditions for each formulation 

which further assists finding the optimal initial conditions 

• Expansion of pseudo 3-D equations of motion to  3-D equations of motion 

• Further expansion of pseudo 3-D equations of motion to 3-D ones with 

addition of a velocity as a state. This constitutes a 3-D varying velocity 

formulation. 
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• Evaluations for the ability to track the pseudo 3-D optimal trajectories in  

a high-fidelity nonlinear simulation of 6 degree-of-freedom (DOF) high-

performance aircraft operating at low altitude over simulated and real 

terrains with both stationary and moving pop-up threats 

• Construction for the 6 DOF full-order optimal trajectories using GESOP 

(Graphical Environment for Simulation and Optimization), the 

optimization software provided by University of Stuttgart. 

• Comparison and analysis of the full-order and pseudo 3-D optimal 

trajectories  

• Flight demonstration of guided flight of an unmanned aerial vehicle 

(UAV) while employing the real-time path optimization algorithm by 

introducing virtual terrains and obstacles 

 

While applying corrections for the optimal trajectory resulting from pseudo 3-D 

formulation by the method of matched asymptotic expansion as in [17] were proposed in 

the phase II proposal, the resulting optimal trajectories from pseudo 3-D and full 3-D 

formulations did not exhibit significant differences, both of which resulted in trajectories 

that exhibit discrepancies  from the full-order GESOP optimal solutions. Various issues 

for comparing pseudo 3-D solutions and those of 6 DOF optimization are extensively 

addressed in [18] the work of which was supported by GST for this Phase II effort and 

performed at the Georgia Institute of Technology under the direction of Prof. Anthony J. 

Calise.  The analysis using the singular perturbation method for full 6 DOF dynamics, 

including engine modeling and aerodynamic coefficients, is considerably complex and 

has not been addressed yet in the literature of optimal path planning for aerial vehicles 

that generally assumes a point mass model for optimization problem.  This task, if 

undertaken, would require extremely complex algebra in order to obtain costate 

equations. Therefore, instead of attempting to carry out complex singular perturbation-

based 6 DOF optimization analysis, we converted our attention to additional aspects of 

pseudo 3-D formulation, such as multi-vehicle formulation and efficient numerical 
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algorithms for the case of increased search dimension due to multi-vehicle formulations. 

The results from this research constitutes the thesis of Shannon Twigg [19].   So 

additional contributions from the Phase II efforts are: 

• Expansion of pseudo-3D and 3D equations of motion to handle 

cooperative path planning for multi-vehicles. 

• Application of genetic algorithms (GA) to solve multiple initial 

conditions. The GA  employed in this work is different from conventional ones as in [1] 

in a sense that GA is only used to set proper initial conditions. With a reasonably small 

number of variables to be solved, the employed algorithm resulted in run-time that is 

comparable to the variable sweep method for a single variable. 
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2. Reduced-Order Formulation 

 In this section, we provide two pseudo 3-D formulations and two full 3-D 

formulations extensively studied in the Phase II efforts. For ease of understanding, we 

concentrate our presentation on those of pseudo 3-D formulations.  Full details on 

expansion of the methodology to full 3-D formulations and that of multiple vehicles are 

referred to the thesis[19] and related papers[20-24].  Figure 2.1 depicts a sample terrain 

profile with the X-Y-H coordinate system and a local x1-y1-z1 coordinate system.  The 

moving local coordinate system has its origin on the terrain surface at a current x, y 

position with the x1-y1 plane being the tangent plane.   

 

 

Figure 2.1: Relationship between Inertial Frame and Local Tangent Plane. 
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2.1 Local Tangent Plane Equations of Motion  

 The local tangent plane formulation incorporates the constraint that the vehicle 

flies tangentially to the local terrain directly into the equations of motion and can be 

written as    

  

 ( )yxu
AA

fVf
A

Vx yx ,
sincos

211

++=
ψψ

&  (2.1) 

 ( )yxv
A

VAy ,sin

2

1 +
−

=
ψ

&  (2.2) 

where x and y are the north and east components, respectively.  V is the total aircraft 

velocity while u and v are the wind velocities in the x and y-directions, respectively.  The 

heading of the vehicle is represented by ψ -- the heading angle measured with respect to 

the local tangent plane.  Also, fx and fy are the partial derivatives of the terrain profile.  A1 

and A2 are given by  

 2
1 1 xfA +=  (2.3) 

 22
2 1 yx ffA ++=  (2.4) 

The cost function for this problem can be seen in the following equation. 

 ( )[ ]∫ +−= ft
dttyxKgKJ

0
),,(1  (2.5) 
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In this equation, the combined threat and terrain function, g(x,y,t), is given as a function 

of time as well as the position and can be defined as follows.   

 ),,(),(),,( tyxfyxftyxg T+=  (2.6) 

Here, f(x,y) is the function for the terrain profile and fT(x,y,t) is the function denoting the 

moving threat.  The weighting parameter, K, can vary between 0 and 1 and determines 

the relative importance of time and terrain masking/threat avoidance used in the 

optimization.  When K = 0, the equations are optimized with respect to time.  When K is 

set to 1, the path is optimized with respect to the threats and the terrain.  The Hamiltonian 

equation can then be given as 

 ⎥
⎦

⎤
⎢
⎣

⎡
+

−
+⎥

⎦

⎤
⎢
⎣

⎡
+++= v

A
VA

u
AA

fVf
A

VAH y
yx

x
2

1

211
4

sinsincos ψ
λ

ψψλ  (2.7) 

In this expression, λx and λy are the costate equations and A4 can be seen in the following 

equation. 

 ( )tyxKgKA ,,14 +−=  (2.8) 

 The moving threat and target equations of motion are, respectively:   

 
TTT

TTT

Vy
Vx

ψ
ψ

sin
cos

=
=

&

&
 (2.9) 

 
TgTgTg

TgTgTg

Vy

Vx

ψ

ψ

sin

cos

=

=

&

&
 (2.10) 

In each expression, it is assumed that the respective velocity and heading angle are 

known at all times.  The moving target then results in a new boundary condition. 
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fttTg

Tg
f tyty

txtx
t

=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

=Ψ
)()(
)()(

)(  (2.11) 

In this expression, it can be seen that Ψ(tf) has an explicit dependence on the final time as 

a consequence of the fact that the target coordinates are assumed to satisfy equation 

(2.10).  Therefore, for a free final time, the Hamiltonian equation satisfies 

 [ ]
f

f

ttTgyTgxTg
tt

T
f V

t
tH

=
=

+=⎥⎦
⎤

⎢⎣
⎡
∂
Ψ∂

−= ψλψλλ sincos)(  (2.12) 

  Due to the moving threat, the Hamiltonian equation, (2.7), is explicitly dependent on 

time.  Given this, the optimality condition for a solution along an extremal arc shows that 

 tKg
t

HH =
∂
∂

=&  (2.13) 

where gt denotes the partial derivative of the penalty function with respect to time.  

Assuming that the threat is constant when expressed in a coordinate system that is 

attached to the moving threat, then 

 ( ) ( )[ ])(,,, tyytxxgtyxg TT −−=  (2.14) 

with the threat coordinates satisfying (2.9).  Thus 

 ( )TyTxT ggKVH ψψ sincos +−=&  (2.15) 

Because the final time is free, the boundary condition for this expression is defined in 

(2.12). 

The optimality condition for this problem is defined as 

 0=ψH  (2.16) 



 

 17

Evaluating this expression results in the following relationship 

 
ψ

ψψ
λλ

cos
sincos

1

2

121 VA
A

A
V

AA
fVf yx

xy ⎥
⎦

⎤
⎢
⎣

⎡
−=  (2.17) 

Equation (2.17) can then be substituted into the Hamiltonian equation, (2.7), to determine 

equations defining the two costates, λx and λy as follows. 

 
( )

Den
AHA

x
ψ

λ
cos2

14 −−
=  (2.18) 

 
( ) ( )

Den
ffHAAHA yx

y

ψψ
λ

cossin 424 −−−
=  (2.19) 

where 

 ψψψ sincoscos 2
2

11 vAvffuAVADen yx −++=  (2.20) 

These new expressions for the costates can then be inserted into (2.12) to result in a new 

boundary condition for the Hamiltonian at the final time. 

  ( ) ( )
( )

fttTgTgyxTgTg

TgTgyxTgTg
f DenAffAV

AffAAV
tH
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⎥
⎦

⎤

⎢
⎢
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−+
=

ψψψψψψ
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2
2
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2
2
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Differential equations for the costates can be found using 
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H
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&
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This yields 

 ⎥
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 ⎥
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where 

 3
2

3
11 AAD =  (2.25) 

 3
22 AfVfD xxx−=  (2.26) 

 yxxxyx ffBVAfffVABAVAD 1
2

1
22

22
2
2

2
13 −−=  (2.27) 

 xxx ffAVABVAD 2
2

2
11

4
14 −=  (2.28) 

 3
25 AfVfD xyx−=  (2.29) 
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2

1
22

23
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2
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 xyx ffAVABVAD 2
2

2
14

4
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 xyyxxx ffffB +=1  (2.32) 

 xxyxyx ffffB +=2  (2.33) 

 xyyyyx ffffB +=3  (2.34) 

 yyyxyx ffffB +=4  (2.35) 

Next, the time derivative of either equation (2.18) or (2.19) is taken and set equal to its 

counterpart in equation (2.23) or (2.24).  This expression can then be solved for the 

derivative of the heading angle such that 
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where 
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2
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 ( ) ψψψ cossincos 22
3
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This solution consists of four differential equations -- x, y, H and ψ -- and requires two 

initial conditions to be found -- H and ψ.  The final value of the Hamiltonian is known, 

via equation (2.21).  The solution is reached when the final values of the Hamiltonian and 

position are met and the cost is minimized.  When there are no moving threats, the 

Hamiltonian is constant in value – so there are only three differential equations – and the 

final value is still known.  When there is no moving target, the final value of the 

Hamiltonian is zero. 

 

2.1.1 Legendre-Clebsch Necessary Condition 

 The Hamiltonian equation for the local tangent plane equations of motion is 
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and the algebraic equations for the costates are 
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Since there is only one control, the second partial derivative of the Hamiltonian with 

respect to the heading angle is a scalar value and is represented by 
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Substituting in the equations for the optimal costates will result in 

 ( ) 04 ≥−= HAH uu  (2.58) 

This condition must always be satisfied. 

2.1.2 Weierstrass Test 

The variational Hamiltonian can be found by substituting the costate equations 

from (2.56) for the optimal path into the Hamiltonian equation from (2.55) evaluated for 

any path.  This yields 
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 (2.59) 

This can be simplified to  

 ( ) ( ) ( )[ ] 0cos14 ≥−−−= ψψψ oHAH  (2.60) 

which will always be satisfied if equation (2.58) is satisfied. 
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2.2 Simplified Equations of Motion 

The equations of motion used in the simplified formulation are:  

 ),(cos yxuVx += ψ&  (2.61) 

 ),(sin yxvVy += ψ&  (2.62) 

These equations are written in the local level plane and neglect the effects of the terrain 

slope.  The cost equation for this case is the same as earlier and can be found in equation 

(2.5).  The corresponding Hamiltonian equation is therefore 

 [ ] [ ]vVuVAH yx ++++= ψλψλ sincos4  (2.63) 

The equations governing the moving target and moving threat can be seen above in 

equations (2.9) and (2.10). Evaluating the optimality condition stated in equation (2.16) 

for this formulation results in the expression 

 
ψ
ψλλ
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xy =  (2.64) 

Substituting this into the Hamiltonian equation results in the following costate equations 
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Therefore, the Hamiltonian evaluated at the final time will be  
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The costate differential equations can then be found to be 

 xyxxxxx vuKgH λλλ −−−=−=&  (2.68) 

 yyyxyyy vuKgH λλλ −−−=−=&  (2.69) 

As before, the time derivative of (2.65) or (2.66) is found and equated to either (2.68) or 

(2.69).  This expression can then be rearranged to result in the following heading 

differential equation. 

 
( )

7

654321

R
vRuRvuRvRuRR xyyx ++−+++

=ψ&  (2.70) 

with 

 ( )ψψ sincos1 xy ggKVR −=  (2.71) 

 ( ) ψψψ cossincos2 xy ggKR −=  (2.72) 

 ( ) ψψψ sinsincos3 xy ggKR −=  (2.73) 

 ( ) ψψ cossin44 HAR −=  (2.74) 

 ( ) ψ2
45 cosHAR −−=  (2.75) 

 ( ) ψ2
46 sinHAR −=  (2.76) 

 ( )HAR −= 47  (2.77) 

Again, the inclusion of a moving target and moving threat results in a system of four 

differential equations with two initial parameters to be found.  
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2.2.1 Legendre-Clebsch Necessary Condition 

The Hamiltonian equation for the simplified equations of motion is 

 [ ] [ ]ψλψλ sincos4 VVAH yx ++=  (2.78) 

and the costate equations are 
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The partial derivative of the Hamiltonian equation with respect to the heading angle is 

 ( ) 04 ≥−= HAH uu  (2.80) 

whish must always be satisfied. 

2.2.2 Weierstrass Test 

Using the Hamiltonian equation in (2.78) and the costate equations in (2.79), the 

variational Hamiltonian can be written as 
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This equation can be reduced to  

 ( ) ( ) ( )[ ] 0cos14 ≥−−−= ψψψ oHAH  (2.82) 

which will always be satisfied if equation (2.80) is satisfied. 

  

2.3  Interior point constraints (way points) 
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One useful problem variation that can also be investigated is the implementation 

of interior point constraints during the flight. For this problem, the constraints will be 

implemented in the form of waypoints where a specific position is required in the middle 

of the flight.  There can be n-number of waypoints during this flight, such that each 

waypoint – with a given x and y position – is reached at an unspecified time, ti, in a 

specified order before ending at the specified final position. 

In this type of problem, there are certain constraints on the costates and 

Hamiltonian that must be fulfilled at the interior points.  They include 
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 (2.83) 

This implies that the value of each of the costates will jump at each waypoint while the 

Hamiltonian will remain constant.  Because of that, the heading angle will also jump at 

each waypoint.  This will result in a trajectory such as that seen in Figure 2.2.  In this  

 

 Figure 2.2: Solution with one waypoint.  
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example, flight over a flat plane with one waypoint is considered.  Because all the terrain 

partial derivatives are zero, the local tangent plane equations of motion will reduce to the 

simplified equations of motion.  In addition, both the costates will be at a constant value 

at all times with a jump at the time of reaching the waypoint.  This results in the heading 

angle also being a constant value with a jump at the waypoint.  Having a jump in the 

heading angle will create an optimal path that is not flyable.  Therefore, the equations of 

motion for this section will be modified to ensure a smooth trajectory. 

The equations of motion for this section will include the equations used earlier 

with the addition of ψ as an additional state.  This results in equations of motion of 
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for the local tangent plane or 
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for the simplified equations of motion.  In these equations, u designates the control 

variable for the system.  The new cost equation is 

 ( ){ } { }∫∫ +=++−= ff tt
dtWuAdtWuKfKJ

0

2
40

21  (2.86) 

which is the same as above with the inclusion of the control in the cost multiplied by a 

weighing factor. 
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The Hamiltonian for this problem is now 

 uyxWuAH yx ψλλλ ++++= &&2
4  (2.87) 

For both formulations, evaluating the optimality equation results in 

 ψλ+== WuH u 20   (2.88) 

This yields the following equation for the control 
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At each interior point, the following conditions on the costates and the Hamiltonian must 

be met. 
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Using these conditions from (2.90) as well as equations (2.87) and (2.86), an independent 

equation for λy is found as follows. 
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Next the differential equations for the other two costates can be determined using 
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This yields 
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for the local tangent plane equations of motion with D1 through D7 defined in equations 

(2.25) – (2.31).  For the simplified equations of motion, the costate differential equations 

are 
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This results in a system of six differential equations.  The initial conditions for the two 

costates – λx and λψ – must be found as well as υ1 for each waypoint. 

 

2.3.1 Legendre-Clebsch Necessary Condition 

The Hamiltonian equation is stated in equation (2.87).  The second partial 

derivative of it then 

 02 >= WH uu  (2.95) 

which means that this condition is always satisfied. 

 

2.3.2 Weierstrass Test 

Using the Hamiltonian equations in (2.87) and the algebraic equations for λy and 

λψ found in (2.91) and (2.89), the variational Hamiltonian can be found to be 

 ( ) 0)( 2
≥−= ouuWuH  (2.96) 
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This shows that the Weierstrass test is always satisfied. 

  

2.4  Expansion to 3-D formulations 
 

 The 3D equations of motion used are 

 ψγ coscosVx =&  (4.1) 

 ψγ sincosVy =&  (4.2) 

 γsinVz =&  (4.3) 

Here, V is the vehicle velocity, γ represents the flight path angle and ψ is the heading 

angle.  The cost equation used for this problem is 

 { }∫ += ft
dtCCJ

0 21  (4.4) 

 ( )yxKfKC ,11 +−=  (4.5) 

 ( )[ ]22 ),( chyxfzWC +−=  (4.6) 

This cost equation has two distinct parts.  The first, and dominant part, is C1 shown in 

(4.5).  This part controls the importance of minimizing terrain masking versus 

minimizing flight time.  The second part is C2 as seen in (4.6).  Here, hc, the ground 

clearance, is a constant provided by the operator and represents the desired flight height 

above the terrain.  This part is used to keep the flight path near the desired ground 

clearance throughout the flight.  W is a weighing parameter supplied by the user. 
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In case the velocity of the vehicle is included as an additional state,   the new 

equations of motion will now consist of the equations in (4.1-3) and also 

 γsing
m

DTV −
−

=&      (4.27) 

In this equation, m is the mass of the vehicle, g is gravity, and T is the thrust of the 

vehicle, which, for optimal results should be held constant at its maximum value. The 

optimization procedure for this case is detailed in [19] and thus omitted here. 
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3. Six DOF Optimization by GESOP 

3.1 Modeling   
The 6 DOF full-order dynamics for GESOP optimization are constructed by 

incorporating engine dynamics and propeller rotation that are built into the f-wing-

simulator (Simulator programmed and used by the Flight Mechanics and Controls Group 

at Georgia Tech.). This f-wing simulator is utilized to evaluate the feasibility of the 

pseudo 3-D optimal trajectory as well. The 6 DOF simulation dynamics comprise 14 

states and described by 

 VTr T
B

rr
=

.
 (1.7) 

 FVmVm
rrrr

+×−= ω
.

    (1.8) 

 MIII
rrrr 11

.
)( −− +×−= ωωω  (1.9) 

 qq q
rr

Ω−=
2
1.

, (1.10) 

where 3Rr ∈r  is the position vector, 3RV ∈
r

 is the velocity vector, 3R∈ω
r

 is the turn 

rate, and 4Rq∈r  is the quaternion vector,  33×∈ RTB and 44×∈Ω Rq  are the directional 

cosine matrix and the quaternion matrix, m  is the mass of the vehicle, and I  is the 

moment of inertia.  The force term F
r

 and the moment term M
r

 are determined by 

aerodynamic coefficients and engine characteristics.  They are based on the Pioneer UAV 
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with some changes in the physical dimensions. The calculation of the aerodynamic 

coefficients for f-wing and the 6DoF-model is based on the coefficient tables in [25]. For 

the GESOP-6DoF-Model these coefficient tables needed to be curve fitted using splines 

to provide smooth functions to the optimizer without a significant loss of performance. 

Table 3.1 gives an overview over the basic model characteristics used for the 6 DoF-

Optimizations. 

 

 SI-system Non-SI-system 

Wing area 1.8910 m² 20.3546 ft² 

Wing width  4.3160 m  14.1600 ft 

Chord width 0.4382 m 1.4375 ft 

Air density 1.2250 kg/m³ 2.3770 slugs/ft³ 

Mass 65.4 kg 4.4813 slugs 

Earth acceleration g 9.8067 m/s² 32.174 ft/s² 

Moments of inertia   

Ixx 7.0838 kg m² 5.2248 slugs ft² 

Iyy 13.6422 kg m² 10.062 slugs ft² 

Izz 16.7213 kg m² 12.333 slugs ft² 

Ixy 0.0 kg m² 0.0 slugs ft² 

Ixz -0.9965 kg m² -0.735 slugs ft² 

Iyz 0.0 kg m² 0.0 slugs ft² 
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Table 3.1: Model characteristics 

 

3.2 Issues for comparison with  3-D results 
 

Recall that the pseudo 3-D formulations in Sections 2.1 and 2.2 incorporate the 

vertical motion into the equations of motion so that the resulting trajectory maintains the 

same altitude over the terrain.  The 3-D formulation in Section 2.4 or 6 DOF formulations 

in Section 3.1, raise the question of how to distinguish hills to prevent the optimizer from 

leading to a solution that flies through hills. One possibility is put a high penalty on 

changing the altitude over the ground so that the optimal path lays somewhere close to 

the constant altitude over the ground layer, which is precisely what has been done, as in 

the term 4C  in (4.6), in the 3-D formulation in Section 2.4.  In case of the 6 DOF full 

aircraft dynamics, since the aircraft dynamics involve more states and control variables 

neglected in the reduced-order formulations, ensuring non-contact between the airplane 

and the terrain should be accomplished by properly maneuvering the airplane, which in 

general requires controlling the aircraft by control effectors and throttle.  This point 

indicates that direct comparison between optimal trajectories from the reduced-order and 

the full 6 DOF aircraft dynamics is not straightforward. For example, even if the same 

cost functional is used, whereas the pseudo 3-D formulation leads to a trajectory of 

constant velocity, the 6 DOF optimizer cannot be forced to fly at a constant velocity and 

the cost integral over time will have little meaning for direct comparison. 

This indicates that for a full 6 DOF optimal trajectory to be comparable to the 

reduced-order solution, we need to address the following issues: 

• How to ensure for the flight path in the 6 DOF optimizer  to be close to the 
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optimal trajectory of the reduced-order formulation so that the cost 

functional in (2.5)  makes sense in both cases 

• How to set boundary conditions for extra states in addition to those states 

resulting from the reduced-order dynamics. 

• How to transform constraints on the control effectors and the throttle into 

equivalent constraints on those states that are treated as controls in the 

reduce-order formulation. 

Case studies for these complexities and some related simulations are presented  in [18]. 

For example, an experiment with the terrain altitude as a path constraint in GESOP full 

order optimization required a large number of grid points for real terrain to cover all 

terrain peaks. Also, direct optimization of 6 DOF model produced heavy peaks and jumps 

in control signals, which are completely neglected in the reduced-order formulation.   

Therefore, to circumvent those complexities arising due to aircraft dynamics such as 

control peaks and engine characteristics, additional cost terms are included in the 6 DOF 

optimization procedure[18]. The goal for these additional costs is to realize the constant 

altitude flight path in the full aircraft dynamics as close as possible to those in the 

reduced-order formulation. The additional terms in GESOP optimization includes 

avoiding peaks in controls, altitude control by terrain-following, and inhibiting 

trajectory-terrain intersection.  The additional cost induced by these terms for terrain-

masking is calculated and compared to the original cost in a terrain-following scenario as 

well in [18]. 
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4.  Numerical Procedure for Optimal 

Trajectories 

4.1 Optimization Procedure for the reduced-order formulation 
 

In case of reduced-order formulation, a solution that satisfies a set of necessary 

conditions for optimality is found by seeking proper initial conditions.  Two different 

methods were utilized to find these initial conditions, depending on the number 

necessary.  When only one value was needed, a variable step sweep was employed to find 

it.  Otherwise the GA was used[26-28].  

To begin the genetic algorithm, a set of 48 chromosomes was initialized 

representing different sets of initial conditions to test.  Each initial value in the 

chromosomes was represented by digits with five decimal places included.  In addition 

the costates, flight path angles and Hamiltonian values included an extra digit to indicate 

a positive or negative value.  After the chromosomes were initialized, they were each 

tested to determine their relative costs.  To accomplish this, the current chromosome 

being tested was broken into its respective initial conditions, which were then used in the 

differential equations.  The cost, J, was found for the run as well as the distance from the 

final position of the run to the final target position.  The sum of these two values was 

used as the total cost for the chromosome. 

After each chromosome was tested and a total cost assigned, the chromosomes 
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were ranked from last to first based on a tournament procedure.  Two chromosomes 

would be randomly chosen to compete and the one with the higher cost was placed in the 

next position on the list while the one with the lower cost was returned to the available 

set of chromosomes to be tested.  This process was continued until all the chromosomes 

were ranked.  The top 24 chromosomes were then kept to begin the next generation. 

In all subsequent generations, the 24 available chromosomes were combined to 

create 24 new chromosomes to complete the population of 48.  Here, chromosomes 1 and 

2 would be combined to create two new chromosomes, and then chromosomes 3 and 4 

would be combined to create two new chromosomes and so on until all the chromosomes 

were mixed.  This was accomplished by first mixing the individual segments of the 

chromosomes so that each of the new chromosomes had some segments from each 

parent, where a segment consisted of the digits for each initial condition needed.  Next a 

mutation was introduced into the new chromosomes such that up to about a third of the 

digits could be changed.  The number of digits changed, which digits were changed, and 

their new values were all determined randomly.  After all the new chromosomes were 

created, the cost assignment and tournament were repeated as before.  This process was 

repeated until it converged on a solution. 

The differential equations were solved using a standard fourth order Runge-Kutta 

method.  In addition, a variable time step was implemented to decrease the time needed 

to numerically solve the set of differential equations.  For most of the flight, the time step 

was 0.1 seconds; however, when the distance to the target final position was close 

enough, the time step was decreased to 0.01 seconds.  

Another condition was added to the differential equation solver to help decrease 
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the solving time of the genetic algorithms.  For each formulation, inequalities were 

derived that had to be satisfied at all times in order for the Legendre-Clebsch necessary 

condition and the Weierstrass test to be satisfied.  These inequalities were then tested at 

each time step.  If either was violated, then the current run was ended at that point.  This 

decreased the solving time significantly, but was even more useful in ensuring the 

convergence to a strong local minimum. 

Table 4.1 contains some average run times for the different formulations using 1.8 

GHz Pentium IV with 1 GB RAM.  This table contains the number of initial conditions to 

be solved for, the run time length for each problem, then the average time it took to solve 

the problem.  It can be seen that the single vehicle formulations were all generally solved 

in less than a minute for a case with a run time of 10 seconds.  The multiple vehicle 

formulations took longer to solve because those cases tended to have a large number of 

local minima.   

    

   

Formulation Number of Variables Run time Time to Solve 

Pseudo 3D 1 10 sec 25 sec 

3D 2 10 sec 40 sec 

Varying Velocity 3 10 sec 65 sec 

2-vehicle 3 25 sec 6 min 

3-vehicle 5 25 sec 15 min 
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4-vehicle 7 25 sec 60 min 

2-vehicle 3D 5 10 sec 10 min 

Table 4.1: Time to Solve for Reduced-order Formulations 

 

4.2  Optimization Procedure for GESOP 
 

GESOP provides several different optimizers. The two main types are methods 

either using a Direct Collocation Method or a Direct Multiple Shooting Method. All 

optimizations in this work were done with Multiple Shooting Method called SNOPT 

(Sparse Nonlinear OPTimizer)[29] . 

The maximum number of iterations was changed from the default 80 to much 

higher values for the more complex iterations. Values around 1000 were used to make 

sure that the optimizer was able to find the optimal solution without any restarts. Initially 

restarts were used to obtain a stable solution, but later it was found that the majority of 

cases did not require a restart. 

The values for “Real Workspace Size” and “Integer Workspace Size” had to be 

increased up to 1,000,000 and 300,000 for the most complex optimizations, to inhibit the 

raise of SNOPT error code 20 which indicates a too small workspace. The variables 

“Opt. Tolerance” and “Const. Tolerance” were left at 6100.1 −× . This causes relatively 

high iteration times but on the other side a very accurate solution. The change of the 

solution on the last 30%-50% of all iteration steps often consists of a very low and almost 

negligible change over a good part of the last iteration steps. For the Major Grid the 

number of points was increased to 50 for most cases. Especially the optimizations for 
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flights over “Real Terrain” needed such high values to converge. The Constraints Grid 

was set to a single point since for the final cases no constraints were applied. The 

Controls Reference Grid was set to a relatively low value of 9 points in most cases. For 

the simulation of the complex optimizations the “Number of Points” for the output 

spacing had to be increased to 201. 

The average run time needed to converge is mostly dependent on the accuracy 

required. With a very high accuracy setting the optimal solution is found in most cases 

after about 45-90 minutes CPU-time (1.8Ghz Pentium IV). With a lower accuracy setting 

the optimal solution can be found in about 30-45 minutes with just very little differences 

compared to the high accuracy setting. A good result which approximately follows the 

optimal solution is available already after a couple of minutes. The results of each step 

can be observed already during the optimization process within GESOP. In general 

optimizations going over real terrain need some more time compared to mathematical 

terrains due to the interpolation routine. 
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5.  Numerical Results 

5.1 Terrain Data 
 

Two general types of terrain models are used for the results throughout this 

report.  The first is a generic terrain model used for the initial testing of the equations.  

This consists of variations of a flat plane with one or more constructed hills.  The second 

consists of actual terrain data for a larger area.  This allows the opportunity for the 

various equations to be tested in a more realistic manner.  

A sample terrain of the generic model is shown in Figure 5.1.  In this case a 

mostly flat plane with a single hill is used.  This hill in this terrain is formulated using the 

exponential function 

 b
r

Aef
2

−
=  (5.1) 

where A is the amplitude, b is a scaling factor to adjust the width and r is the distance 

from any position to the center of the threat.   
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 Figure 5.1: Terrain with threats formulated as an exponential function.   

 

Real terrain data was acquired from the United States Geological Survey to 

incorporate into this model[30]. The data was found in tabular format relating the altitude 

to the locations longitude and latitude, with data points spaced approximately every 48 

feet.  This data was then converted to matrix form, from which it could then be used 

as ),( yxf .  Because of the distance between the sampled altitude points in the matrix, the 

data was then smoothed to appear more continuous and to remove discontinuities in 

altitude.  The gradients of this matrix, along both the x and y directions, were calculated 

numerically to form matrices representing ),( yxf x  and ),( yxf y .  The gradients of these 

two matrices yielded matrices for ),( yxf xx , ),( yxf yy  and ),( yxf xy .   
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  Figure 5.2: Terrain plot of an area near Columbus Ohio. 

 

For this portion of the testing, it was decided to use a section of terrain near 

Columbus, Ohio.  A profile of this terrain can be seen in Figure 5.2.  In this graph, the x 

and y-axes depict the position coordinates, measured in feet, such that the x-axis point 

north and the y-axis points east.  The altitude of the terrain is measured along the z-axis 

and is also given in feet.  This plot depicts a square plot of land, with 10,000 feet to a 

side.  The measurements along the x and y-axes are relative to a set origin. 

 

5.2 Pseudo 3-D and 3-D results 
 

Optimal trajectories from the pseudo 3-D formulations that include wind effects, 

moving targets, interior point constraints in the form of waypoints, and moving threats, 
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and those from the 3-D formulation are found in the chapters 3 and 5 of the thesis [19]. 

The simulations were performed with generic terrain models in Figure 5.1 and the real 

terrain data in Figure 5.2.  In this report, we compare the trajectories obtained from both 

pseudo 3-D and 3-D reduced-order formulations.  For a given terrain, a flat plane with a 

single hill, the optimal trajectories found to navigate it for both minimum time and terrain 

masking flight are compared.  The formulations considered include the simplified and 

local tangent plane equations of motion for the pseudo-3D case as well as the constant 

velocity and varying velocity 3D equations of motion.  This is repeated for three 

different-steepness hills. 

 Figures 5.3 – 5.5 contain the results for the minimum time, K = 0, case.  Each 

figure portrays the results from a different hill height. The top two plots are a 3D view 

and an overhead view of the trajectories from the pseudo-3D case while the bottom two 

plots depict the paths for the 3D cases.  For these cases, the trajectories from using the 

simplified equations of motion and from using the local tangent plane equations of 

motion are the same and are represented by the black line.  In the bottom two plots, the 

black line represents the simplified the constant velocity 3D equations of motion.   
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  Figure 5.3: Trajectories for K = 0 and hill height = 30. 

 

The red line is for the varying velocity 3D equations of motion.  The plots for the 3D 

equations of motion trajectories are the same as depicted in Chapter 5 in [19], and are 

repeated here for convenience.  In the first two cases, with hill heights of 30 and 40 feet, 

the constant velocity 3D trajectories are the same as the pseudo-3D formulations; 

however, in the steepest hill, the 3D trajectory begins to veer around the hill.  In all three 

cases, the varying velocity trajectory veers around the hill to some extent.   
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  Figure 5.4: Trajectories for K = 0 and hill height = 40. 

 

 Some details from the various cases portrayed in these figures are tabulated below 

in Table 5.1.  Here, the time for the flight and the cost of the flight can be compared for 

each set of equations of motion investigated.  In this table, it can be seen that the flight 

time does not change with the simplified equations of motion, while the time increases 

for the local tangent plane and 3D equations of motion.  This is because the time needed 

to fly vertically is ignored in the simplified equations of motion.  This time is better 

accounted for with the local tangent plane equations of motion, but these final times are 

still slightly less than the final times with the 3D equations of motion, especially when 

the hill steepness is greater.  The final times for the varying velocity cases are 

significantly greater due to the loss in velocity during the flights.  
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  Figure 5.5: Trajectories for K = 0 and hill height = 50. 

 

     
 Hill Height = 30 Hill Height = 40 Hill Height = 50 
 tf cost tf cost tf cost 

simplified 7 7 7 7 7 7 
local tangent plane 7.06 7.06 7.1 7.1 7.15 7.15 

3D 7.06 7.063 7.11 7.116 7.16 7.165 
varying velocity 7.27 7.289 7.37 7.371 7.45 7.451 

Table 5.1 Trajectory data for K = 0 flights 
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 Figures 5.6 – 5.8 contain the plots for the results for K  = 1.  These plots are for 

cases parallel to those shown in Figures 5.3 – 5.5.  The same three hill heights are 

displayed with the four sets of trajectories depicted.  As in the earlier plots, the top plots  

 

 

  Figure 5.6: Trajectories for K = 1 and hill height = 30. 

show the trajectories from using the simplified and local tangent plane equations of 

motion.  The bottom two plots depict the results from Chapter 5 in [19] for the 

trajectories using the 3D constant velocity and varying velocity equations of motion.  In 

each of the four cases, for each of the three hill steepness, the trajectories appear the 

same.  The trajectory always curves around the given hill. 
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 Table 5.2 contains the final time and cost information for the trajectories from 

each set of equations of motion and for each hill height for the K = 1 formulation.  It can 

be seen here that there is very little difference in these results regardless of the equations 

of motion used or the hill steepness. 

 

 

 

  Figure 5.7: Trajectories for K = 1 and hill height = 40. 
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  Figure 5.8: Trajectories for K = 1 and hill height = 50. 

 

    
  Hill Height = 30 Hill Height = 40 Hill Height = 50 
  tf cost tf cost tf cost 
simplified 8.42 26.349 8.42 35.1314 8.42 43.9143
local tangent plane 8.42 26.348 8.42 35.1305 8.42 43.9132
3D 8.42 26.349 8.42 35.132 8.42 43.914
varying velocity 8.41 26.306 8.42 35.108 8.42 43.88

Table 5.2 Trajectory data for K = 1 flights 

 

5.3 Six DOF optimal trajectories using GESOP 
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 While reduced-order optimal trajectories are obtained by indirect methods, 

GESOP utilizes a direct method. Therefore, it is first verified that optimization results of 

GESOP are comparable with the results the optimizations in [19] by implementing  the 

simplified equations in Section 2.2 into GESOP with the same boundary conditions 

enforced. It is shown that the resulting trajectories are almost identical (see Chapter 5 in 

[18]). This ensures that numerical methods employed for optimization do not generate 

differences.  The first optimizations were the flights around one, three and five 

mountains. The 3DoF-Optimizations were used for the optimizer verification presented in 

Appendix B in [18]. Later when the 6DoF model was working, the same optimizations 

were done with it to investigate its behavior for flights over mathematical formed terrain 

as in (5.1).  

For the 6DoF-Optimization K was set to 1 and Terrain-Following was activated. 

Since the ground under the optimal path is almost perfectly flat a constant absolute 

altitude must be the result. As shown in Figure 5.12 this is almost perfectly the case 

except a very small variation of about 7ft on a flight path length of more than 1600ft. 

 
360 380 400 420 440 460 480 500 520

200

400

600

800

1000

1200

1400

1600

1800

x

y

GaTech Calc
GESOP 3DoF-Opt

 

Figure 5.9. Trajectories for 3 Mountains – 3 DOF GaTech GESOP 
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 In figure 5.9 practically identical results of the GaTech-Calculation (dashed) and 

the GESOP-3DoF-Optimization (dotted) are shown with the corresponding mountains. 

The x-y-units are in [feet] here. The zoomed trajectories are shown in the right figure in 

Figure 5.9. 

As a next step, case studies with different operating conditions and cost functions 

are extensively carried out to understand the influence of different initial conditions, 

dynamic constraints, and different cost functions. Table 5.3 illustrate cases studied with 

the full 6 DOF GESOP optimizations, whose definitions for case details can be found in 

[18]. 

Case
1. Reference I X X High (50m) 1.0
2. Reference II X X X X X High (50m) 1.0

X X Low (18m) 1.0

X X X Low (18m) 1.0
5. Reference I, Half Thrust X X High (50m) 0.5

X X High (50m) 1.0

X X X X X High (50m) 1.0

X X X X X High (50m) 1.0

X X X X X X High (50m) 1.0

X X X High (50m) 1.0

X X High (50m) 1.0

X X X X X Low (18m) 1.0

X X X X X Low (20m) 1.0

X X X X X Low (20m) 1.0

Terrain 
Masking 
optimization 
(K=1)

Explicit 
Time 
optimization 
(K=0)

Terrain 
following 
on

Visibility 
Check

High 
Penalty for 
flying under 
Terrainlevel

Final altitude 
constraint

Comparable 
weighting

Flight 
altitude

Maximal 
Throttle

3. Reference I, Lower flight 
altitude
4. Reference I, Lower flight 
altitude + penalty for flying 
under terrain level

6. Reference I, deactivated 
engine moments
7.Reference II, Optimal 
Time
8.Reference II, Visibility 
Check
9.Reference II, Visibility 
Check + Terrain following
10. Reference I + Final 
Constraint
11. Reference I, Optimal 
Time
12. Reference II, Lower 
flight altitude + penalty for 
flying under terrain level
13. Flight over terrain for 
pop up threat (threat not 
active)
14. Flight over terrain for 
pop up threat (threat 
active)  

Table 5.3 Parametric Studies-Overview 
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5.4 Comparisons between Pseudo 3-D results and GESOP solutions with 
Simulated hills 
 

5.4.1 Flight around three mountains 

Figure 5.10 shows the dotted GESOP-pseudo 3-D Optimization, labeled as 

“GaTech 3DOF-Opt”, now in comparison with the  trajectory followed by the aircraft in 

the f-wing simulator, labeled as “GaTech Sim”, and the solid 6DoF-GESOP-

Optimization, labeled as “GESOP 6DOF-Opt”. 
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Figure 5.10  3 Mountains-3 DoF-GESOP vs 
GaTech-Sim & GESOP 6 DoF 

Figure 5.10  3 Mountains-3 DoF- with and 
without Turn rate constraint and  
GESOP 6 DoF 

The GaTech-Simulation follows the commanded trajectory very closely up to the sharp 

turn. There it follows the command with a short delay and continues on a path parallel to 

the commanded trajectory with a constant shift until the end of the simulation. The solid 

6DoF-Optimization starts and ends at the same point like the 3DoF-Optimization.  
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This is not surprising because these points are 

set as initial and final boundary conditions. The 

trajectory's course is also about the same. But 

the dynamics of the airplane model seem to 

cause a smoothening of the trajectory. The turn 

is less sharp, it begins earlier, ends later and the 

maximal extend to the left is smaller. It looks 

like the maximal turn rate is restricted by the 

airplane's dynamics. So an interesting question 

is how the 3DoF-Optimization would change if a maximal turn rate constraint would be 

set. The result is shown in figure 5.11. The dotted line is the 3DoF-Optimization as 

before, the solid line the 6DoF-Optimization as before, and the dashed line the new 

3DoF-Optimization with the turn rate constraint. The 3DoF- and 6DoF-solutions are 

almost identical now. So for flights over flat terrain at a constant altitude a turn rate 

restriction in the simple 3DoF-Simulation can produce a solution very similar to the 

6DoF-solution. Most probably the autopilot of the simulator would have minor problems 

to follow the commanded trajectory, too, because no impossible turn forcing the airplane 

to leave the commanded trajectory would be included any more. 

 

5.4.2 Flight around Five mountains 

As can be seen in the figures 5.13 and 5.14 the 3DoF-Optimizations from GaTech 

and GESOP are identical again, in figure 5.15 gets clear again that the GaTech-

Simulation follows with some delay and a persisting deviation while the 6DoF-
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Optimization follows closely with a slightly lower maximal turn rate. In figure 5.16 the 

maximal turn rate of the dashed 3DoF-Gesop-Optimization was set to a value so that the 

3DoF-Result is similar to the 6DoF-Trajectory. But at the first little turn it is obvious that  
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Figure 5.13: 5 Mountains – 3DoF GaTech-Gesop 
– xy a 

Figure 5.14  1: 5 Mountains – 3DoF GaTech-
Gesop – xy b 
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Figure 5.15: 5 Mountains – 3DoF Gesop vs. 
GaTech Sim & Gesop 6DoF - xy 

Figure 5.16: 5 Mountains – 3DoF with/-out turn 
constraint  vs. 6DoF Gesop - xy 

for a good turn rate constraint approximation it must be not just constant, but velocity 

dependent. The limited solution has a bigger distance to the unlimited solution and the 

6DoF-Optimization is able to follow that very closely. As shown in figure 5.17 the 6DoF-

velocity is still low there. In the second turn the 6DoF-Simulation takes a wider way 
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around the mountain and sticks closer to the limited solution due to its higher velocity. So 

a velocity dependent turn rate restriction in the 3DoF-Optimizations for flights in 

constant absolute altitude would approach the 6DoF-Optimization more closely than the 

constant restriction. 
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Figure 5.17: 5 Mountains – 6DoF – velocity u over time 
 

 

5.4.3 Flights With Moving Targets and Threats 
 

In addition to the comparisons of the 3DoF-Target-Threat-Optimizations, now the 

6DoF-Optimizations and the 3DoF-Simulations will be compared to the 3DoF-

Calculations. As 3DoF-Calculation always the GaTech solution is shown.  
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Figure 5.18 shows the 6DoF-Optimization in 

comparison with the GaTech-Calculation. 

There is no big surprise, the 6DoF-

Optimization takes the turn a little smoother, 

but this is the only difference. In the GaTech-

Simulation case in figure 5.19 the path is 

followed almost perfectly on the straight line 

up to the turn. There a shift is generated and 

doesn't get completely eliminated till the end 

point. It is anticipated that an I-factor in the 

autopilot is possibly too small there. 

A completely different course than the 

GaTech calculation takes the 6DoF-Simulation 

in the 1 threat case (figure 5.20). Instead of 

passing in front, it passes behind. But 

examinations showed that this pass-behind 

solution can also be produced with the Gesop-

3DoF-Optimization. Simply the heading for 

the initial guess needed to be changed and a 

solution very similar to the 6DoF-Optimization 

(dotted line) was the result. But it wasn't 

possible to do it the other way round so that the 

 

Figure 5. 18: Moving-Target: GaTech-Calc 
vs. 6DoF-Gesop - No Threat 

 

Figure 5.19.: Moving-Target: GaTech-Calc 
vs. GaTech-Sim. - No Threat 

 

Figure 5.20: Moving-Target: GaTech-Calc vs. 
6DoF-Gesop, 3DoF-Gesop restricted - One 
Threat 
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6DoF-case would follow the original 3DoF-case. 

Of course the GaTech-Simulation's autopilot in figure 5.21 follows the 

commanded trajectory but here the gap between the commanded and the simulated path 

is wider.  

 

Figure 5.21: Moving-Target: GaTech-Calc 
vs. GaTech-Sim. - One Threat 

Figure 5.22: Moving-Target: GaTech-Calc 
vs. 6DoF-Gesop, 3DoF-Gesop restricted - 
Two Threats 

It closes faster than before, but not 

completely till the end as well. The second 

threat doesn't change the situation in 

general any more. Also here the 6DoF-

Optimization passes behind both 

mountains, the original 3DoF-

Optimizations pass in front, and again a 

3DoF-Optimization with a different 

heading for the initial guess produces a solution similar to the 6DoF-version. The 

autopilot in figure 5.23 reacts as described before, but it should be noticed that the gap 

after the second turn is bigger than after the first one. This could be because the second 

 

Figure 5.23: Moving-Target: GaTech-Calc 
vs. GaTech-Sim. - Two Threats 
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turn is simply harder, but at least a portion is owed to the fact that the gap isn't closed at 

the beginning of the second turn. Therefore more turns could lead to problems with the 

stability of the simulation when it gets too far off the commanded track. 

 

5.5  Comparisons between Pseudo 3-D results and Gesop solutions with 
the real terrain 

 

5.5.1 Terrain-Masking (K=1) 
 

The first 3DoF-6DoF comparisons  

over real terrain are optimizations with 

K=1 (Terrain-Masking). The Gesop-

Optimization is the lower case of the 

comparison with K=1 Low-Flight – High-

Flight shown above. In figure 5.24 the 

GaTech (black) -Calculation (dotted), its 

simulation (solid), together with the 

Gesop-Optimization (white) are drawn. It 

can be seen immediately that the GaTech 

solution takes a completely different way compared to the Gesop trajectory. Despite the 

fact that the optimizer with K=1 is set to fly over terrain which is as low as possible, the 

GaTech-Calculation takes a path over the yellow ridge. In addition the simulation has 

significant problems to follow the commanded path (figure 5.25). This even leads to a 

path where the airplane would crash into the terrain at the first hill at this altitude (break 

Figure 5.24: Ref.II, K=1 vs. GaTech-Calc & 
-Sim.-3D 
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in the solid black line in figure 5.25). Also the commanded final altitude cannot be 

reached. The reason for that is most probably the fact that the simulator tries to fly a 

constant velocity. A steeper decent would accelerate the airplane over the commanded 

constant velocity, so the Autopilot descends slower. Regarding the flight path length the 

Gesop-Optimization's path is a little shorter (figure 5.26). Also the integral of the terrain 

altitude over the path length shows the significant quality difference between the paths.  
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Figure 5.25: Ref.II, K=1 vs. GaTech-Calc & -
Sim. - path-altitude 

Figure 5.26: Ref.II, K=1 vs. GaTech-Calc & -
Sim.-xy 

 

The GaTech path integral with 115,838.64 is about 34.2% higher than the Gesop path 

integral with 86,308.24. 

 

5.5.2 Optimization of time (K=0) 

Now instead of using K=1 for Terrain-Masking optimization, K=0 for Time-

Optimization was used in figures 5.27-5.29. The Gesop case this time is the higher case 

of the Time-Optimization shown above. 
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Compared to the previous case, the 

GaTech-Optimization again takes a 

different path than the 6DoF-Gesop 

solution. But an optimal solution with 

(unfortunately not comparable) different 

weightings on altitude change cost takes 

the same valley and sticks much closer to 

the GaTech solution. These results are 

shown in the figures 5.30-5.32 below. 
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Figure 5.28: Ref.II, K=0 vs. GaTech-Calc & -
Sim.-xy 

Figure 5.29: Ref.II, K=0 vs. GaTech -Calc & -
Sim. - path-altitude 

 

 

Figure 5.27: Ref.II, K=0 vs. GaTech-Calc & 
-Sim.-3D 
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The reason that despite the fact that for 

K=0 the GaTech Trajectory is not a 

straight line is the use of the pseudo 3-D 

formulation. They let the optimizer realize 

that flying over a hill lengthens the flight 

path but still doesn't tell it the differences 

in velocity caused by climbs / descents. 
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Figure 5.31: Ref.I, K=0 vs. GaTech-Calc & -
Sim.-xy – unequal weighting 

Figure 5.32: Ref.II, K=0 vs. GaTech Calc & 
Sim.- path-altitude – unequal weighting 

 

Therefore the optimizer tries to avoid high slopes and at the same time it tries to find the 

shortest possible connection, which is probably the reason why it flies so close nearby the 

red top mountain at a relatively constant altitude without using the valley to accelerate 

and reaching the destination quicker. Again the constant velocity constraint inhibits the 

simulator to be able to reach the destination at the commanded altitude and it is not able 

Figure 5.30: Ref.I, K=0 vs. GaTech -Calc & 
-Sim.-3D – unequal weighting 
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to follow the altitude commands closely along the trajectory (figure 5.32). On the other 

side the x-y-command is followed very well like before (figure 5.31). This time the 

simulation's trajectory does not cross the terrain, but if the starting altitude would be 

lower it would. 

In comparison the Gesop solution consequently tries to fly over low profile as 

much as possible. First the obligatory decent to gain speed and then it climbs the first hill 

at the latest position possible for this trajectory. Afterwards it flies directly in the middle 

of the first valley to descent as soon as possible again. So the average overflown altitude 

is lower in Gesop and therefore the Flight Path – Terrain altitude integral with 86.308.24 

is about 31,59% smaller than 113,574,47 for the GaTech-Optimization. 

 
 

5.5.3 Flight over terrain for a Threat 
 

 The white line in figure 5.33 

represents the 6DoF-solution, the black 

dashed line the GaTech-Optimization, the 

black solid line the GaTech-Simulation 

when a threat pops-up. 

In figure 5.34 the trajectories in the x-y-

plane are shown and in figure 5.35 the 

altitude over the flight path length can be 

seen. Despite the fact that both 

optimizations were made with K=1 and the terrain level input for the Lagrange Cost 

function was normalized to the same values, there still remains a significant difference. 

 

Figure 5.33: Pop-Up-Threat Gesop (white) 
vs. GaTech (black) -
Calc.(dashed) & -Sim.(solid) - 3D 
- No Threat 
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Figure 5.34: Pop-Up-Threat Gesop vs. GaTech-
Calc. & -Sim. - xy - No Threat 

Figure 5.35: Pop-Up-Threat Gesop vs. GaTech-
Calc. & Sim. - path-altitude - No Threat 

 

The 6DoF solution takes a longer way compared to the GaTech solution. The reason for 

this difference is most probably caused by the advantage the 6DoF-Model draws out of 

the fact that it is able to gain speed much quicker by flying through the blue sink and 

even more avoiding the higher but shorter path the GaTech solution takes. As described 

earlier a constant velocity is commanded for the 3DoF-simulation, which does not take 

into consideration the extension of the path and slow down by first going up and 

afterwards going down a hill. For a flight going from a point A to a point B it is faster to 

fly through an imaginary valley rather than to fly over an imaginary mountain with the 

same size because the average speed is much higher when accelerating in the beginning 

of the maneuver. The 6DoF-optimizer realizes the advantage of a shorter flight time and 

therefore smaller Lagrange Integral by quickly gaining speed through the valley in the 

beginning and also tries to avoid higher mountains since they slow down the airplane. A 

look at figure 2.53 shows that. 



 

 64

The 6DoF flight is slightly longer but the average flight altitude of the Gesop 

solution is much lower than the GaTech-Calculation / -Simulation. The altitude 

difference at the end is most probably caused by the different interpolation methods used 

(Cubic-Spline-Int. in Gesop vs. Linear-Int. for GaTech). So at this example the 

differences between 3DoF and 6DoF-Optimiations come out very clearly.  

 

5.5.4 Flights with a Pop-UP Threat 

Now during the flight presented in the previous paragraph a Pop-Up-Threat 

suddenly appears after some seconds of the flight on the optimal trajectory of the airplane 

so that the airplane must find a new trajectory to avoid the threat. The threat itself is 

again represented by a Gaussian hill. Figure 5.36 shows the situation. The solid line 

shows the normal flight path, at the point where the dashed line comes out of the solid 

line, the wired hill representing the threat suddenly appears. At this point a new 

optimization is started with all actual state-values as initial boundary conditions for the 

new optimization. The optimizer calculates the new trajectory which is represented by 

the dashed line in Gesop. The GaTech-Solver doesn't need to use these initial boundary 

conditions since it just creates heading commands for the simulator which the Autopilot 

tries to follow then.  So sudden turns are allowed there. The effect can be seen in figure 

5.37. The dashed-dotted line is the heading command, the solid line is the simulator's 

trajectory trying to follow the heading command. Coming from the right bottom, after the 

appearance of the Pop-Up-Threat the heading command suddenly jumps clockwise. The 

airplane of course can't follow such quickly and tries to adapt with the delay it needs to 

turn.  
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Figure 5.36 Pop-Up-Threat-Gesop Solution-3 
D-with Threat (white solid)-without Threat 
(white dashed) 

Figure 5. 37 Pop-Up-Threat-GaTech-
Calc.(dashed) & -Sim (solid)-with Threat 

The 6DoF-Optimization creates this smooth turn already during the optimization because 

the aircraft model with its dynamics is already built into the optimization loop. Since the 

basic trajectories in the paragraph before were too different to produce a comparable 

result with the same (threat-)hill, the hills for the two optimizations were located at 

different positions so that their tops intersect with the corresponding trajectory. Then the 

optimizations with the Pop-Up-Threat were set in such a way that the distances of the 

airplane to the appearing threat were about the same in both cases. In figure 5.38 a 

comparison between the GaTech-Simulation (black) and the Gesop-Optimization (white) 

for a Pop-Up-Threat appearing very close in front of the airplane is shown. It is the same 

case like in figure 5.36 and 5.37. The hills were left out to keep the figure 

understandable, but figure 5.36 shows the same case with the hill for the Gesop-part. The 

points where the threat appears are marked by additional small circles in the figures 5.39 

and 5.40. The behavior of both solutions is very similar. Both try to avoid the hill by 
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flying around it. The fact that they take different ways around the hills is not significant 

because slight hill position changes can already switch that. 

As can be seen in figure 5.39 the 

turn rates in the GaTech-Simulation seem 

to be a little higher than in the 6DoF-

Optimization. Reasons for that might be 

the penalty on the control derivatives, or 

the relatively wide-meshed control grid, 

but one certain reason is that the average 

velocity in the GaTech-Simulation was 

100ft/s (30.48m/s) while the average speed 

of the 6DoF-Optimization with  109.25 ft/s 

(33.3m/s) was about 10% higher. 

In contrast to the undisturbed flight both solution also fly a lower profile in the 

case with threat (figure 5.40). The explanation for that are most probably the sharp turns. 

In the 6DoF-case the optimizer tries to keep the velocity as high as possible which leads 

to a descent during the sharp turn because the lift decreases and a higher lift during the 

sharp turn would result in a higher drag. 

On the other hand for the GaTech case where the simulator tries to fly a constant 

velocity the loss in lift by the sharp turn maybe can't be compensated. 

 

 

Figure 5.38: Pop-Up-Threat appearance      
 Gesop (white) vs. GaTech 
Sim.(black) Dashed: With 
appeared threat, Solid: No 
appeared threat -3D 
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Figure 5.39: Pop-Up-Threat appearance  
Gesop (green) vs. GaTech Sim.(black) Dashed: 
With appeared threat, Solid: No appeared 
threat -xy 

Figure 5. 40: Pop-Up-Threat appearance  
Gesop (green) vs. GaTech Sim.(black) Dashed: 
With appeared threat, Solid: No appeared 
threat - path-alt. 

 

5.5.5 Earlier pop-up Threat 
 

In the dotted lines in figure 5.41 shows the result when the Pop-Up-Threat 

appears earlier and the aircraft has more time to avoid it. As expected the trajectory 

leaves the original path earlier. After some time it matches the dashed trajectory of the 

first Pop-Up Threat in both cases.  This shows that behind the threat the optimal path is 

about constant and can be reproduced even under different circumstances. 
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Figure 5.41: Early Popup-Threat Gesop (white) vs. GaTech (black) Calc. & Sim. - Dotted: 
early appearance of threat, Dashed: late appearance of threat - 3D 
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6.  Flight Demonstrations 

This section includes flight demonstration results in which an optimal trajectory is 

implemented in real-time using the reduced-order formulation. The pop-up obstacle is 

simulated as a pop-up mountain in a virtual environment.  

6. 1 Integration Details 
 

The planner was integrated into the Rmax environment for execution on the 

second flight computer (onboard2). A list of tasks being performed on onboard2 is shown 

in Figure 6.3.  

 

The general sequence of events when flying the planner includes the following.  

 

1. On gcs, load obstacle database into memory on the 
ground station (gcs). 

a. wdbset gcswdb 
b. wdbclear 
c. wdbdatumned  
d. @ropdb 
e. scene0.redraw=1 
f. scene1.redraw=1 
g. scene2.redraw=1 

2. On gcs, instruct onboard1 to start sending extman0 
messages 

a. rc obDatalinkSet.sendExtMan0 = 1 
3. On onboard2; Set planner parameters; an important 

parameter is, hc_const, which must be set to the 
nominal altitude above the terrain that one wants the 
vehicle to fly: 

a. cd reducedOrderPlanner 
b. W         = -0.05 
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c. V_stall   = 5 
d. flag_real = 1 
e. e         = 1 
f. w_end     = 500 
g. hc_const  = 300 
h. scale_lam = 1 
i. T = 50 

4. On onbard2, set up history recording by executing 
a. @rophist 

5. On onbard2, get ready for loading the obstacle database 
a. wdbset ob2wdb 
b. wdbclear 

6. On gcs, issue a command that transmits the datum used 
to initialize onboard1, to onboard2. 

a. wdbdatumob2 
7. On onbard2, load the obstacle database 

a. @ropdb 
8. On onboard2, Start the rop planner task 

a. taskStart rop 
9. On onboard2, instruct the onboard2 main loop to call 

ropTraj when an external maneuver message (extman0) is 
received 

a. onboard2.runRop=1 
 
The above steps are encoded as input files and executed in the following sequence. 

1. on gcs do @ropgcs 
2. on ob2 do @ropob2 
3. on gcs do wdbdatumob2 
4. on ob2 do @ropob2b 

 
 

At this point, the planner task is executing on onboard2. Various waypoints may 

be setup on the gcs, some that may include passing through obstacles. The various 

pseudo-codes for the tasks executing on onboard2 are shown in Figure 6.3. An overview 

of the messages being send and received across the various computers are shown in 

Figure 6.4.  

6.2 Simulation 
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As an example, the planner was executed in simulation. In Figure 6 1: Example gcs 

view during before using the planner segment1 passes through an obstacle. In this case the 

obstacles are hills with a maximum altitude of 300 ft.  

segment 0

segment 1

obstacles

segment 2

 
Figure 6 1: Example gcs view during before using the planner 
 

The planner running on onbard2 may be instructed to replan segment 1 (between 

waypoint 1 and waypoint 2), by issuing 

 

replan 1 

 

at the gcs console. Figure 6 2 now shows the trajectory for segment 1 generated by the 

planner in blue.  
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re-planned segment 1

 

Figure 6 2: gcs after segment 1 has been replanned. The blue segment indicates trajectory 
generated by the planner 
 

Making sure that waypoint 2 has the type MAN_EXT, the trajectory may be 

uploaded and executed using the following commands. 

 

trajUpload 

trajGo 

 

Figure 6.5 shows the aircraft at various instants, tracking the planner generated 

trajectory. Figure 6.6, shows a close up of the position response around the hill and 

Figure 6.7 shows the position response for the entire set of waypoints. 
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6.3 Experimental Results 
A flight test was conducted on the 11th of July 2007 – utilizing the GTYak research 
UAV.  
 
Pictures (files starting with GTYak): 
http://uav.ae.gatech.edu/pics/f070711_flight_FormationFlight_ObstacleAvoidance/ 
Video: 
http://uav.ae.gatech.edu/videos/y070711b1_planner1.wmv 
 

During the test, a simulated hill was placed at 0,0,0 with a maximum altitude of 300 ft. 

The setup for simulation and flight is exactly the same, except that gcs, onboard1 and 

onboard2 are executing on different computers.  Figure 6.8, shows the trajectory around a 

simulated hill. The offset in lateral position is due to the initial condition offset when 

entering the external planner’s segment. This offset may be alleviated by introducing a 

straight line segment that passes through the last waypoint before the planner’s segment 

is executed. Figure 6.9 shows position plots versus time. 

6.4 Relevant Files 
 
File name Description 
rop.h, rop.cpp Standalone planner algorithm 
rop.db declares data structures used by the planner 

during execution. It also contains data 
structures used to store planned segments 

wdb.h, wdb.cpp World Database. Contains code to 
represent, add, and remove obstacles. Also 
contains a function to query local terrain 
altitude taking obstacles into account. 

wdb_scene.h, wdb_scene.c World Database. Contains code to draw 
obstacles in the scene window 

ropint.h, ropint.cpp main code that integrates the planner into 
the GTMAX environment. Contains 
procedures to generate grid data from the 
world database, makes coordinate 
conversions between planner and GTMAX 
NED coordinates. It also contains functions 
which, given a pre-planned trajectory 
segment, will use interpolation to generate 
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trajectories real-time during flight. 
ropgcs.inp execute during flight test at gcs, loads 

database from ropdb.inp, sends extman0 
ropob2.inp some parameters for the planner, activates 

ob2wdb, the onboard2 world database and 
clears it, also setups up history recording 
variables 

ropob2b.inp execute on ob2, loads database from 
ropdb.inp which should be uploaded to 
ob2, also starts the planner thread 

ropdb.inp contains list of obstacles and loaded at gcs 
and ob2 

ropsim.inp setup up sim environment for testing rop 
rophist.inp history variables for data recording 
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onboard2

- while not quit:
- read onboard2PortIPC
- if extman0 was received

- call ropTraj
- endif
- send extman1 (in onboard2.cpp)
- endwhile

ropTraj:
- if man_type is MAN_EXT and the relevant 

segment’s validsolution flag is true
- if first time through

- save start time in seg.t
- if seg.t not greater than seg.trajtf

- use getTraj to get interpolated 
solution at trajectory time t

- fill in extman1 with trajectory 
information

- else
- increment extman1.manIndex to move 

to next waypoint
- endif

- endif

Planner Thread (ropTask):

- while not quit:
- loop through each segment:

- if segment needs replanning
- call gengrid
- execute planner
- if valid trajectory generated

- set validsolution flag
- save trajectory

-correct coordinates
-smooth trajectory

- send trajectory to gcs
and save it to file

- else
- unset validsolution flag

- endif
- endif

- endloop
- endwhile
- gengrid:

- figure out extents of database 
and set coordinate corrections

- probe world database to get 
altitude map

- use central differences to 
generate directional derivatives

- save grid to file

Main Thread (updateOnboard2): Planner Thread (ropTask):

onboard2

- while not quit:
- read onboard2PortIPC
- if extman0 was received

- call ropTraj
- endif
- send extman1 (in onboard2.cpp)
- endwhile

ropTraj:
- if man_type is MAN_EXT and the relevant 

segment’s validsolution flag is true
- if first time through

- save start time in seg.t
- if seg.t not greater than seg.trajtf

- use getTraj to get interpolated 
solution at trajectory time t

- fill in extman1 with trajectory 
information

- else
- increment extman1.manIndex to move 

to next waypoint
- endif

- endif

Planner Thread (ropTask):

- while not quit:
- loop through each segment:

- if segment needs replanning
- call gengrid
- execute planner
- if valid trajectory generated

- set validsolution flag
- save trajectory

-correct coordinates
-smooth trajectory

- send trajectory to gcs
and save it to file

- else
- unset validsolution flag

- endif
- endif

- endloop
- endwhile
- gengrid:

- figure out extents of database 
and set coordinate corrections

- probe world database to get 
altitude map

- use central differences to 
generate directional derivatives

- save grid to file

Main Thread (updateOnboard2): Planner Thread (ropTask):

 
Figure 6.3: Overview of tasks on onboard2 
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Figure 6.4: Overview of transmission and reception of messages relevant to the planner 
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Figure 6.5: Images at various instants of the maneuver 
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Figure 6.6: Plot of trajectory around hill. extman0 represents the actual trajectory of the vehicle, 

while extman1 represents the commanded trajectory 
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Figure 6.7: Plot of the various position command (extman1) and response (extman0) versus time. 

The segment where man_type is 6 corresponds to the segment generated by the planner. 



 

 80

   

-2000 -1500 -1000 -500 0 500 1000 1500 2000
-1200

-1000

-800

-600

-400

-200

0

200

400

600

800  
position plots

east

 

no
rth

altitude
raw
smoothed
extman0
extman1

 
Figure 6.8: Plot of trajectory around a simulated hill. 
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Figure 6.9: Plot of position responses during flight. extman1 represents the command and extman0 
represents the response. The segment where man_type is 6 corresonds to the trajectoyr generated 
by the planner 
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7. Conclusions and Recommendations 

In the Phase II effort we extensively addressed trajectory optimizations in incrementally 

complex formulations starting from the pseudo 3-D formulation, via 3-D point mass model to the 

full 6 DOF aircraft dynamics. Optimizations over mathematical and real terrains were 

investigated with moving targets, moving threats, and pop-up threats while the aircraft moves 

along the terrain. The pseudo 3-D reduced-order formulation is flight demonstrated for 

replanning an optimal path when a virtual obstacle pops up using a fixed wing flight test-bed. 

This illustrates that the resulting optimal trajectory from the pseudo 3-D formulation is 

numerically efficient and can be implemented for trajectory optimization for autonomous aerial 

vehicles. 

Comparison studies of the pseudo 3-D solutions with the optimal solutions obtained 

using the full 6 DOF aircraft dynamics reveal various subtle issues in path planning regarding 

the sub-optimality of the reduced-order solution. In the case of terrain-masking and flight time 

minimization, our research during the Phase II efforts led to the following observations. 

First, towards the task of terrain-following, the pseudo 3-D formulation is associated with 

the reduced-order point-mass equation that incorporates the terrain information in the phase of 

problem formulation. This leads to an trajectory that maintains a constant altitude over the 

terrain map with a constant maximal velocity to minimize the flight time[13]. While this is a 

reasonable assumption for those trajectories in which vertical portion of velocities are negligible, 

this assumption may be violated when the aircraft flies over a series of steep hills and deep 

valleys. In case of 6 DOF optimizations, terrain following is achieved by adding additional cost 

terms in the performance index.  Figure 7.1 compares each costs in the case of terrain-following 

(K=1) for the optimal trajectory with the real terrain data, which reveals that the cost for the 

terrain-following dominates the overall performance index. Figure 7.2 shows the same costs as in 

Figure 7.2 for a non-optimal solution with the 6 DOF aircraft dynamics. Figure 7.2 reveals that 
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there is a flight trajectory for which additional costs for maintaining a constant altitude over the 

terrain is at the same magnitude of the terrain following (at least for a while), and this implies 

that the reduced-order optimal solution that minimizes the only portion of the terrain-following 

cost may quite deviate from the 6 DOF trajectory. 
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Figure 7.1: Comparison of costs for optimal 
trajectory for terrain-following 

Figure 7.2: Comparison of costs for a non-
optimal trajectory for terrain- following 

 

The spikes shown in Figure 7.2 also imply that the rate of control signals should be constrained 

to result in a flyable trajectory. However, this has to induce additional constraints on the states 

used as controls in the reduced-order formulation. This is also related to the next issue. 

Second, heading constrains with the reduced-order formulation leads to very close 

optimal trajectory to the 6 DOF optimal solution in case of generic hills in which optimal 

trajectories veer around hills (for example see Figure 5.10 and 5.16). With the real terrain data, 

the main differences between the pseudo 3-D solutions and 6 DOF optimal solutions result from 

altitude variations. As a matter of fact, the pseudo 3-D solutions are not flyable in the f-wing 

simulator in some cases. Considering that heading-constraint generates a trajectory close to an 

optimal trajectory with 6 DOF optimizer, this observation implies that additional constraint or 

formulation is required to address neglected part of the vertical dynamics. 
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Third, it was found that an optimal solution may be sensitive to initial conditions. For 

example, in Figure 5.20 in Section 5.4.3, the pseudo 3-D solution passes a threat in front while 

the 6 DOF optimal solution passes the target behind. Changing an initial guess for the heading 

angle resulted in a solution that is close to the 6 DOF optimal trajectory.  An interesting question 

is how different costs are for these seemingly discrete trajectories. The study reveals that the 

difference in cost is not significant. Likewise, for 6 DOF optimization, several different 

trajectories of the same level of costs were available, and small changes in the weighting factors 

in the performance index could lead to quite different trajectories as a result of more possible 

combinations for states and control variables. Following the above observations, further research 

for on-line path optimization is recommended to address the following. 

First, in the current effort, the pseudo 3-D optimization led to similar trajectories, with 

comparable cost, to those of 3-D formulation as shown in Section 5.2. This became a basis for 

ensuing study of extending the reduced-order formulation into multi-vehicle formulation that 

will benefit the research on multi-vehicle formation and cooperation in performing tasks. More 

quantitative analysis is, however, required with varying degree of complex terrains. In particular, 

analysis of the degree of the sub-optimality due to neglected portion of the dynamics will 

provide clear insight on the feasibility of the current formulation in more general terrain and 

mission scenarios. 

Second, a main drive for the reduced-order formulation was numerical efficiency in a 

general setting of solving necessary conditions for optimality with the singular perturbation 

theory as an analysis tool for the neglected portion of the dynamics. However, formulating the 

aircraft dynamics in a singular perturbation form requires identification of a parasitic parameter 

which reveals inherent time scales in the aircraft dynamics, which is probably most difficult part 

of applying the singular perturbation method. As a matter of fact, a large effort has been made 

for a systematic methodology for selecting time-scaled state variables in general nonlinear 

optimal control[31-34], and writing the original dynamics in a singular perturbed form is still a 

main theoretical issue[14]. Performing more rigorous study on the form of the terrain-following 

dynamics may allow for proper corrections if the reduced-order solution leads to unflyable 

trajectories as has been done in [17]. An alternative method based on pseudo-control 
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hedging[35] allowed the vehicle to fly a modified trajectory in simulation, which is discussed in 

the last paragraph of this section. 

Third, finding equivalent constraints in the reduced-order formulation  in case when the 

real control signals are position and rate limited is worth study. In particular, for the current 

scenario of terrain-following, the assumption of constant velocity over the constant altitude over 

the terrain is unrealistic with the real terrain and led to a solution that differs from the true 6 

DOF optimization. However, properly constrained heading rate, the resulting trajectory is very 

close to the full-order optimizer. This implies that further study on adding constraints on the 

vertical motion may lead to similar results as was done for X-Y trajectories. Some directions, 

such as limiting the angle of attack or formulating the reduced-order problem in modified energy 

form, were proposed in Phase I final report.  

Fourth, while the pseudo 3-D formulation employed in this study was an attempt to 

reduce the number of optimization variables by exploiting analyticity of optimally conditions in 

a singular perturbed dynamics, various schemes that tries to reduce the number of optimization 

variables also exist. For real-time trajectory generation, the notion of differential flatness has 

recently been introduced and attracted many researchers because the reduction of the number of 

variables can be performed in utilizing inherent structure of the dynamical systems in flat 

systems, and therefore dynamic constraints, the equation of states, are automatically met[36-38]. 

While this sounds very promising in terms of numerical computation, recent research reveals that 

the ease in computation offered by the reduction of the number of constraints in flatness-based 

methods can also be achieved by exploiting spare linear algebra in solving the underlying 

optimization problem [39]. Further, real-time trajectory generation is not merely driven by the 

number of constraints or optimization variables but fundamentally intertwined with  optimization 

principles such as convexity[40]. We note that flatness-based methods belong to the category of 

direct methods[1], and direct comparison between flatness-based methods and the reduced-order 

formulation is not feasible. However, with the given scenario of terrain-masking, moving targets 

and obstacles, feasibility study on the structural property such as flatness of the air vehicle 

dynamics will further shed light on the structure of the air vehicle trajectory optimization and 

strengthen the understanding on the viability of the reduced-order formulation. 
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Finally, while the reduced-order optimal solution in a certain case leads to a trajectory 

that can not be tracked with the full aircraft dynamics, the neural network-based autopilot hedges 

the unfollowable portion of the guidance command by estimating achievable portion of 

trajectories by aircraft dynamics[41] and still maintains reasonable flights. For example, Figures 

5.25, 5.29, and 5.32 shows that the altitude command is being tracked reasonably well 

considering significant fluctuation of original commands. This raises a question if guidance-

command hedging mechanism can be used to correct the feasibility of the optimal solutions so 

that a resulting flight path is near optimal to the original full-order optimal trajectory. Some 

implications provided by this study, such as simplification of re-planning and robustness to the 

modeling error that will destroy the optimality anyway if the aircraft dynamics are uncertain, 

may be worth further study. 
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